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Covariant conservation laws in the Palatini formalism are derived. The result 
indicates that the gravitational part of conserved charges in general relativity 
should be calculated from a combination of Komar's strongly conserved current 
and the Einstein tensor. This implies that the set of complete diffeomorphism 
charges of a gravitating system consisting of scalar matter is described by Komar's 
vector density, and that the identification of gravitational energy and momentum 
reduces to two choices: a choice of relative weights of the contributions resulting 
from Komar's current and from the Einstein tensor; and a choice of preferred 
vector fields in space-time. A proposal is made which yields energy and momen- 
tum as scalars under diffeomorphisms and as a Lorentz vector in tangent space. 
Furthermore, the result can be used to identify covariant conservation laws hold- 
ing separately for the matter contributions to diffeomorphism charges. 

1. INTRODUCTION 

The ambiguities in the definition of energy and momentum of the gravi- 
tational field provide a still incompletely understood aspect of general relativ- 
ity. A classical and still useful survey of the development until 1962 is 
provided in Trautman (1962). Useful accounts of the subject, each from a 
different point of view and emphasizing different results, can also be found 
in Schmutzer (1968), Moiler (1972), Weinberg (1972), Misner et al. (1973), 
Wald (1984), Carmeli et aL (1990), and De Felice and Clarke (1990). How- 
ever, none of the solutions of this long-standing problem is considered satis- 
factory, and there is still active research on the identification of conserved 
charges in general relativity, yielding interesting new ideas and develop- 
ments. Recent contributions can be found in articles by Murphy (1990), who 
investigates a conserved complex from the Palatini formalism, and by 
Nissani and Leibowitz (1991), who split the energy-momentum tensor T~,v 
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into contributions from matter and from the gravitational field. Conserved 
charges from SL(2, C ) gauge theory are discussed in Carmeli et al. (1990). 
Of interest also is the beautiful idea of Nissani and Leibowitz to identify 
nonrotating frames, where conservation of the energy-momentum tensor 
globally takes the form auTUV=0; see Nissani and Leibowitz (1988, 1989, 
1991) and Carmeli et al. (1990). 

Here I am interested in a discussion of the conservation laws resulting 
from the invariance of general relativity under reparametrizations x ~ ~ (x), 
which are supposed to represent diffeomorphisms (of appropriate order) of 
the space-time manifold. 

According to standard conventions, a conservation law related to a 
currentj is denoted as strong if du ju = 0 holds identically, and as weak if 0u ju 
is proportional to the equations of motion. Furthermore, a conservation law 
0u f l  = 0 is denoted as covariant if the current j is a vector density. In this 
case, and if the space like components of j vanish sufficiently fast, then j 
defines a conserved charge 

J 

which is invariant. Here 50 is a spacdike hypersurface, and 

Extending earlier work by Bergrnann (1958) and Mr (1958) on conserva- 
tion laws in general relativity, Komar (1959) proposed the strongly conser- 
ved current 

K u = 2x/-~(V ~V" e" - A e u) = 23,,[x/-~(V" e" - V ~ s")] 

to be considered as a vector density of charges related to the 
reparametrizations 

x" ---, ~"(x)=x" + ~"(x) 

This work was based (in an indirect manner) on the Lagrangian 

~ ( g ,  Og) = 1---x/-~(F~ ~xF~,,r 
z z  

However, soon thereafter, Fletcher (1960) derived Komar's expression for 
pure gravity directly from the Einstein-Hilbert Lagrangian. The result in the 
case O u e ~= 0 was also obtained already by Mizkjewitsch (1958). 

In the sequel I will discuss diffeomorphism charges and covariant con- 
servation laws derived from the Palatini formalism, thus extending the recent 



Covariant Conservation Laws 111 

work of Murphy (1990), who derived the conservation laws in the case 
a m e v = 0. The motivation for this work is twofold: On one hand, the identifi- 
cation of covariant conservation laws from the Palatini formalism includes 
the covariant conservation laws of general relativity, and thus may help to 
clarify the issue of energy and momentum of the gravitational field. On the 
other hand, there exist similarities between the Palatini formalism in general 
relativity and the Polyakov action in string theory, where the conservation 
laws derived from the Polyakov action play a crucial role in the quantization 
of the theory [see Dick (1991) for a discussion of superstring theory on 
arbitrary genus and in a covariantized primary field formalism]. 

The development leading to Komar's proposal and the direct construc- 
tion of conserved charges from the Einstein-Hilbert Lagrangian is briefly 
reviewed in Sections 2 and 3, while in Section 4 the covariant conservation 
laws from the Palatini formalism are introduced. Section 4 contains also a 
proposal on the identification of gravitational energy and momentum vector 
densities among the conserved currents, which yields an energy-momentum 
Lorentz vector in tangent space. 

The conventions employed in this paper follow Misner et al. (1973). 
Furthermore, torsion is always excluded, and covariant derivatives which 
explicitly preserve the metric under parallel translation are denoted by V, 
i.e., Vg= 0, while otherwise they are denoted by D. 

2. CONSERVATION LAWS ACCORDING TO EINSTEIN, 
BERGMANN, MOLLER, AND KOMAR 

A usual canonical derivation of conserved charges of a gravitational 
field employs the familiar Noether theorem for a reparametrization 
x ~ ~ ' ( x ) = x ' +  s~(x). If the first-order change of the fields is denoted 
by ~(x)-~ ~ ( 4 ) =  q~(x)+ 5~(x), then the Noether theorem is conveniently 
expressed in the following equation for the first-order change of the action 
S = S d4X L~a(fP' 0tp) : 

~ S= f d4xl g lt( 6sl,,~ -l- ( ~ qjl-- OvfPl ) ~ "~ 

,, {~LP ~9(~,)c1~ __)] 
+ (1) 

where ~pt labels the different fields appearing in ~ ,  and all repeated indices 
are summed over. Conserved charges arising via the Noether theorem from 
a reparametrization symmetry of the equations of motion will be denoted 
as diffeomorphism charges in the sequel. 
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In the realm of gravitation theory the Noether theorem has been par- 
ticularly applied to the Lagrangian 

2'(g, 0g) = 2~./-~ (r" ~Wv.~- F" v,,rvx~)g ~ (2) 

which differs by a complete divergence from the Einstein-Hilbert Lagrang- 
ian. Clearly, s Og) is not a scalar density under diffeomorphisms, and, 
hence, 6S has to be evaluated carefully, before conservation laws can be 
derived from equation (1). 

It is well known that the early results of Einstein on conserved charges 
in general relativity can be derived by exploiting the fact that 6(s Og)/ 
. . / ~ )  = 0, hence 8S=  0, under linear reparametrizations. Consideration of 
the case e" = const yields particularly the weakly conserved Einstein complex 

t t~=gt~Sr uv- c3.W (O'~g)O(OagUV) 

= g~P ~a - 2-~ [F~'p~,O~ ( x / ~  gPa ) - Fap.0~(vC~gm')] (3) 

Bergman (1958) pointed out that it is possible to construct conservation 
laws from equations (1) and (2) for arbitrary reparametrizations due to the 
fact that the first-order change of 8S is given by a complete divergence: 

6S=fd4x,/~a~(g'Og)-fd'xd.k ~ (4) 

A direct calculation from equation (2) yields 

! 

k" =-~Z (gPU g ' ( ' -  gp"g,~')( O,, ez) a , , (x /~  gpV) (5) 

Insertion into (1) implies a weak conservation law related to the current 

CU = ~Sr  ) O.W k ~ = , f - ~  e~tJ + 1  U U~O~e~ (6) 
O(~,g ~p) 2Z 

with the superpotential 

U,,u " - ~_~ ga tjO p[g(gtJVg p" - gm'gPV) l (7) 
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Furthermore, Bergmann employed the equations Of motion to write the 
conserved current (6) in compact form as 

c = •  v(e ~ vo "v) (8) 
2Z 

However, C ~ does not represent a vector density and, hence, the conserved 
charges calculated from (8) have undesirable transformation properties. 
Now, the weak equivalence 2 Z x / ~ t J = O ~ U ~  ~'v was also exploited by 
Mr (1958) to define an improved complex via 

r~u = 1_ O~V~ u ~ (9) 
2Z 

where he defined the superpotential 

V,~u~=2UJ ~-  8,~'UpPV + 8,~Up p~' (10) 

M#ller demonstrated that this definition yields charges (QO, Q} with the 
property that QO is invariant under time-independent reparametrizations, 
while Q transforms like a 3-vector. The transformation properties of 
{QO, Q} were further discussed by Kovacs (1985). 

The results (8) and (9) of Bergmann and M~ller motivated Komar 
(1959) to investigate the currents t3,,(e"VJ~), and he demonstrated that 
addition of a further curl field yields the vector density 

K u = 2 v / ~  (V,,VUe~-Ae ~) (11) 

which he suggested to be considered as the conserved currents related to 
infinitesimal reparametrizations x" ~ ~u (x) = x ~ + e'(x).  

Exploiting the identity 

e~p~(VvVUe ~-  Ae~) = 3Vt~ e~Tj~ vV~ e ~ 

demonstrates that Komar's invariant charges can be calculated as integrals 
over boundaries: 

Q=-fo  dx" ̂ dx  for *de 

The synopsis of the development leading from the Einstein complex to 
Komar's covariant conservation laws reveals that all the conserved currents 
can be written as strongly conserved currents plus terms of the form eU(R/ 
2)-RU~e ". This holds also for the Landau-Lifshitz complex (see, e.g., 
Mr 1972) and for the complex of Brill and Deser (see, e.g., Weinberg, 
1972). The property of pure gravitational currents to differ from the Einstein 
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tensor by strongly conserved currents is brought most clearly to the light by 
a direct construction of diffeomorphism charges from the Einstein-Hilbert 
Lagrangian. 

3. DIFFEOMORPHISM CHARGES FROM THE 
EINSTEIN-HILBERT LAGRANGIAN 

To derive the conserved charges related to the reparametrization invari- 
ance of the Einstein-Hilbert Lagrangian, it is useful first to generalize equa- 
tion (1) to Lagrangians including second-order derivatives (Mizkjewitsch, 
1958; Fletcher, 1960; Schmutzer, 1961): 

O(t~l.t(P') ( ( ~ 0 , - -  EVOvq),)~ p O(Op(~lt~,))  

laze aze azf 
+ ( 6 @ -  e O v @ ) k ~ -  a" - - +  0Pau a(Ou rpD O(0p~-~ rp,)JJ (12) 

where f 3 g - f  ~ g -  gOf  
Application of this result to the Einstein-Hilbert Lagrangian 

,L.q~(g, 3g, a0g) = 2~ x / ~  R (13) 

is lengthy and tedious, but straightforward, so I will only remind the reader 
that the curvature scalar can be written as 

1 ctv R=gUVgapOu• g,~Ovg"~+-~g,,p• �9 O~g~U 

5 ~lt v ~ ~ ~ ct ? 
- ~  ~;.o~;zao.~ �9 8vg #a- �88  g~pS~g ~p " grsOvg ra (14) 

The weakly conserved current resulting from equation (12) is then 

1 
J~ =~ZZ x / ~  [2VUV~e ~ - VvV u ev - Ae~ + e u R] (15) 

Application of the relation 

[V~, V"] e ~ = R u ~e v (16) 

yields 

J "-2(R  -�89 (173 

implying that the gravitational part of any diffeomorphism charge consists 
of  a trivially conserved part and a term proportional to the Einstein tensor 
density. Note that the Einstein tensor cannot be omitted in (17), because if 



Covariant Conservation Laws 115 

a matter Lagrangian is added to the Einstein-Hilbert Lagrangian, then the 
Einstein tensor will yield a nonvanishing contribution to the gravitational 
part of the diffeomorphism charges, which is exactly what we are seeking. 

On the other hand, it is tempting to conclude from equation (17) that 
the gravitational part of diffeomorphism charges is simply given by 

j u = _ l v ~  (RUv_�89 v = - l  ':~ G, e v 
Z Z 

= _2gUP 6~(g, Og, Oag) e~ (18) 
6g p~ 

Motivated by the similarity of this expression to the energy-momentum 
tensor of matter 

TU eV=_2gUO 6~o.~,(~o, Ocp) e v (19) r 

the interpretation o f - G u ~ / Z  =(g~vR-2R~,~)/(2Z) as the energy-momen- 
tum tensor of the gravitational field was suggested long ago by Levi-Civita 
and Lorentz. 

Hence, from this point of view the vector density which expresses the 
invariance of a scalar system under reparametrizations x ~ ~ (x) = x + e(x) 
is given by 

Z / 

The Einstein equation then would state that a space-time manifold is in 
equilibrium if the globally vanishing diffeomorphism charges are distributed 
uniformly. However, at this stage it is too early for a judicious choice on 
how to weigh the strongly conserved current of Komar versus the Einstein 
tensor, and in Section 4 we will find some evidence that the gravitational 
part of diffeomorphism charges has to be calculated from the full current 
displayed in equation (17). 

. COVARIANT CONSERVATION LAWS IN THE 
PALATINI FORMALISM 

The metric appears in the Palatini action 

~ ( g ,  F ,  0 F ) =  1 - - ~ / : - g g " V ( ~ p r " . v  - " " ~ - " 8vF up+F zpF u~ F ~vF ~p) 
2 Z  

(21) 
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like an auxiliary field ensuring a vanishing "energy-momentum" tensor 
density 

-1-/Z-~" Gu~ = - 2 ~  6 (~Aa(g' F, OF) 
Z ~gUV 

However, the conservation laws related to the invariance of the Palatini 
action under x-~ ~ ( x ) = x +  e(x) assume a more complicated form: The 
conserved current 

ju  = eus F, OF) + (3F '~7-  eVOvF"ar) OLt'(g, F, 0F) (22) 
g(g.ra~r) 

can be written in an explicitly covariant way by use of 

3Fa~r-  e"OvFa~r = -DrDiJe <' + R"orve v (23) 

Thus we find the following vector density of conserved currents: 

u 1 
J = - -  x / ~  [cUR + gP'~(RUp,~e ~ -  Do D,~e u) +g~P(D~Dpe ~-  Rave~)] (24) 

2Z 

Insertion of the metric-preserving connection into (24) reproduces the con- 
served current displayed in equation (17). However, there is an important 
difference between the currents displayed in equations (17) and (24): The 
generalization of Komar's vector density appearing in equation (24) yields 
nontrivial contributions to the conservation of diffeomorphism charges, 
because its divergence no longer vanishes off-shell, and hence it should no 
longer be omitted by a triviality argument. Although this result cannot be 
considered as a proof, it provides evidence in favor of the conjecture that 
the gravitational current of diffeomorphism charges should be described by 
the already introduced combination of Komar's current and the Einstein 
tensor: 

1 
J. = [v v. e A e . -  v] (25) 

From equation (12) we also note that the matter contribution to currents of 
diffeomorphism charges generically will be of the form 

0 ~  
|  T~ ev+~Vz (26) 

O(0. ~,) 

For a gravitating system consisting of scalar matter this implies that Komar's 
strongly conserved current should be considered as the complete current of 
diffeomorphism charges. In passing I would also like to remark that we may 
derive from (25) nontrivial conservation laws which hold separately for | 



Covariant Conservation Laws 117 

This usually requires the insertion of Killing vectors in the evaluation of the 
conserved currents, because only the dynamical evolution of matter in a 
prescribed space-time is taken into account. However, the proposal to 
employ Killing vectors is very restrictive, as, e.g., in Friedmann models there 
exist (apart from the empty flat case) only six spacelike Killing vectors 
corresponding to spacelike rotations and generalized translations. Here the 
requirement is much weaker, because we know by construction that the 
equation 0u ( j  ~ + | = 0 holds weakly, and therefore 

G u vV~ ev = 0 (27) 

is both sufficient and necessary to ensure separate conservation of gravi- 
tational and matter contributions to diffeomorphism charges. For a 
Robertson-Walker metric, e.g., 

ds2=-dl2+a2(t)I~+r2(d~2+sin20 dep2) ] 

equation (27) takes the following form: 

a4G v'v.  ~. = 3a 0,[(~2 + k)ag,] - 4 (2a~/+ 62 + k) 
r 

+ Oo(sin ,9 ~o)+ O~e~, =0  
sin 

which simply fixes e, for any prescribed set of spacelike components. 
However, the identification of covariant conservation laws in general 

relativity is only one facet of the problem: There remains the task to select 
energy and momentum vector densities among the conserved currents. The 
definition of energy and momentum in special relativity and the principle of 
equivalence suggest the following choice: Set up a continuous distribution 
of inertial frames. Then insert those anholonomic vector fields e which 
correspond to orthonormal bases in the intertial frames to calculate gravita- 
tional energy and momentum densities from (25). If eu ~ is a tetrad, then this 
amounts to the following vector density of a gravitational energy-momentum 
vector: 

Pa =~Z x/-~ tVvVU eVa- AePa - 2G~veVal (28) 
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yielding a gravitational energy-momentum vector 

~ ,  = - * ~ _ g  eu (29)  

for a spacelike hypersurface 6 e. Note that ~ is a Lorentz vector of diffeo- 
morphism scalars, thus providing a suggestive answer to the old, but still 
controversially discussed problem of what kind of mathematical entity gravi- 
tational energy-momentum will correspond to. 

In conclusion, we observe that all the canonical derivations of diffeo- 
morphism charges in general relativity yield the result (25), if noncovariant 
superpotentials are excluded. Nevertheless, we still have the freedom to 
multiply the strongly conserved part by a weight factor, and we have to 
select those vector fields ~ in space-time which yield the gravitational energy 
and momentum when inserted into the gravitational energy-momentum 
operator (a = 1 above) : 

a 
v} +R)-AgJ g 

zZ X 

Though the choice proposed in equation (28) seems most natural to me, to 
resolve the remaining ambiguities requires further investigations both in 
"experimental" directions, namely on the significance of ~ in exactly solved 
models, and in theoretical directions, particularly on possible current 
algebras based on ~. 
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